Femtoscopy with Levy HBT at NA61/SHINE 17th International Scientific Days, Gyöngyös, Hungary

Barnabás Pórfy for the NA61/SHINE Collaboration

Wigner RCP, Hungary

5 June. 2020

Supported by the UNKP-19-1 New National Excellence Program of the Ministry for Innovation and Technology

Search for the CEP Lévy type of HBT

High Energy Physics and the Big Bang

- Big Bang 0 s, Present 13,7 billion years after
- First $\mu s \rightarrow sQGP$
- How can we observe? Heavy ion-collisions
- Strongly interacting matter created (sQGP) QCD phasediagram

Search for the CEP: Spatial Correlations?

- At the critical point CEP: fluctuations at all scale
- Power-law in spatial correlations
- Critical exponent η
- QCD universality class \leftrightarrow 3D Ising: Halasz et al., Phys.Rev.D58 (1998) 096007

Stephanov et al., Phys.Rev.Lett.81 (1998) 4816

• 3D Ising: $\eta = 0.03631$

El-Showk et al., J.Stat.Phys.157 (4-5): 869

- Random field 3D Ising $\eta = 0.50 \pm 0.05$ Rieger, Phys.Rev.B52 (1995) 6659
- Possible to measure η with Lévy HBT

Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042

Bose-Einstein Correlations in Heavy-Ion Physics

A way to measure spatial correlations: Bose-Einstein mom. correlations

• R. Hanbury Brown, R.Q.Twiss observed Sirius with optical telescopes

R. Hanbury Brown and R. Q. Twiss 1956 Nature 178

- Intensity correlations as a function of detector distance
- Measuring size of point-like sources
- Goldhaber et al: applicable in high energy physics: (for identical pions)

G. Goldhaber et al 1959 Phys.Rev.Lett. 3 181

• Momentum correlation C(q) is related to the source S(x) $C(q) \cong 1 + |\widetilde{S}(q)|^2$ where $\widetilde{S}(q)$ Fourrier transform of S(q)

• S(r) frequently assumed to be Gaussian, leads to Gaussian C(g)

Search for the CEP Lévy type of HBT

Lévy Distribution in Heavy-Ion Physics

 $\bullet\,$ Measurements not fully supporting Gaussian \to Generalized CLT

Lévy-stable distribution: $\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$

• • From generalization of Gaussian, power-law tail: $\sim r^{-(d-2+lpha)}$

•
$$lpha=1$$
 Cauchy, $lpha=2$ Gaussian

• The shape of the correlation function with Lévy source: $C(q) = 1 + \lambda \cdot e^{-(qR)^{\alpha}}$

• $\alpha = 1$: Exponential, $\alpha = 2$: Gaussian Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67-78 • Reasons for Lévy source:

- QCD jets; Anomalous diffusion; Critical phenomena, ... Csörgő, Hegyi, Novák, Zajc, AIP Conf. Proc. 828 (2006) 525-532
 Csörgő, Hegyi, Novák, Zajc, Acta Phys.Polon. B36 (2005) 329-337
 Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002
 Metzler, Klafter, Physics Reports 339 (2000) 1-77
- Lévy distributions lead to power-law spatial correlations
- Spatial correlation at the critical point: $\sim r^{-(d-2+\eta)}$
- Lévy-exponent α identical to correlation exponent η

Anomalous diffusion

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

The NA61/SHINE Detector

- Located at CERN SPS, North Area
- Fixed target experiment
- Large acceptance spectrometer (TPC)
 - Covering the full forward hemisphere
 - Outstanding tracking, down to $p_T = 0 \ GeV/c$
- Light to heavy collisions at multiple energies
- Centrality selection based on forward energy measured by PSD

NA61/SHINE HBT results

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Event and Track Selection

- Be+Be @ 150A GeV/c beam momentum
- Track selection:
 - Track quality and vertex cut applied
- Pair selection:
 - Reduce track merging and track splitting
- Particle identification:
 - Done via dE/dx method
 - Negative π pairs and positive π pairs
 - Works well for π

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Bose-Einstein-correlation function

- A(q) Pairs from same event
- B(q) Pairs from mixed event
- C(q) Correlation function, C(q) = A(q)/B(q)

- C(q) corr. func. as a function of $q_{\mathsf{LCMS}} |q| = |p_1 p_2|$
- LCMS: Longitudinally CoMoving System
- In 4 m_T intervals from 0 to 600 MeV/c; $m_T \equiv \sqrt{m^2 + (K_T/c)^2}$

• C(q): B-E effect and Coulomb-hole at low q values: $A(q) \text{ and } B(q), (K_T) = 150 \text{ MeV/c}$ $C(q) = A(q)/B(q), (K_T) = 150 \text{ MeV/c}$

글 날.

NA61/SHINE HBT results

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Handling the Coulomb Interaction

- Same charge pairs: Coulomb repulsion
 - Standard handling method: Coulomb corr.
 - Calculation: complicated numerical integral
 - Does not depend strongly on α , see plot \rightarrow
 - Small effect in Be+Be
- Approximate formula (for $\alpha = 1$) from CMS: Sirunyan et al. (CMS Collab.), arXiv:1712.07198 (PRC 2018)

•
$$\mathcal{K}_{Coulomb}(q) = \text{Gamow}(q) \cdot \left(1 + \frac{\pi \eta q \frac{K}{hc}}{1.26 + q \frac{R}{hc}}\right)$$

where $\text{Gamow}(q) = \frac{2\pi \eta(q)}{e^{2\pi \eta(q) - 1}}$ and $\eta(q) = \alpha_{QED} \cdot \frac{\pi}{q}$

Fit function: Bowler-Sinyukov $C(q) = 1 - \lambda + (1 + e^{-|qR|^{\alpha}}) \cdot \lambda \cdot K(q)$

Yu. Sinyukov et al., Phys. Lett. B432 (1998) 248, M.G. Bowler, Phys. Lett. B270 (1991) 69

《曰》 《圖》 《문》 《문》 도[님]

Numerical Coulomb calculation

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Parameters of the Lévy Correlation Function

- Lévy scale R:
 - Determines length of homogeneity
 - Simple hydro picture suggests transverse velocity (*u*_T) dependence:

 $R_{HBT} = R/\sqrt{1+(m_T/T_0)\cdot u_T^2}$

- Correlation strength λ:
 - Describes core-halo ratio:

 $\lambda(m_T) = \left(\frac{N_{core}}{N_{core}+N_{halo}}\right)^2$

- Core: primordial pions
- Halo: resonance decay products and general background
- Lévy exponent α :
 - Stability exponent determines source shape
 - $\alpha = 2$: Gaussian, predicted from simple hydro
 - $\bullet~\alpha <$ 2: Generalized CLT, maybe anomalous diffusion
 - $\alpha = 0.5$: Conjectured value at the critical point (CEP)

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Correlation Radius R vs m_T

- Describes length of homogeneity
- From hydro: $R \sim 1/\sqrt{m_T}$
- Slight decrease with m_T Sign of transverse flow?
- Similar results to RHIC p+p, LHC p+p and p+Pb

A.N, Makhlin and Yu. M. Sinyukov, Z.Phys. C39 (1988) 69 Csörgő, Lörstad, Phys.Rev.C54 (1996) 1390

S. Chapman, P. Scotto and U. Heinz, Phys.Rev.Lett. 74 (1995) 4400-4403

Introduction NA61/SHI NA61/SHINE HBT results Conclusion Lévy HBT

NA61/SHINE experiment and analysis setur Lévy HBT parameters Lévy HBT with fixed parameters

Correlation Strength λ vs m_T

Describes core-halo ratio

Core-Halo model: Csörgő, Lörstad, Zimányi, Z.Phys.C71 (1996)

- Comparing with SPS and RHIC results:
 - Low m_T values show no decrease in λ (sim. to other SPS results)
 - Halo component increases at RHIC (e.g. In-medium mass mod.)
- λ value shows weak m_T dependence

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Lévy Stability Index α vs m_T

- Lévy-stability index α:
 - Shape of spatial correlation
- Between $lpha \approx 1$ and 1.5
- Far from Gaussian ($\alpha = 2$), near Cauchy ($\alpha = 1$)
- Far from CEP($\alpha = 0.5$)
- Similar results to RHIC Au+Au $\sqrt{s_{NN}} = 200$ GeV results

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Fixed Parameter Fitting

- Interparameter correlations:
 - Known characteristic of Lévy fit
 - Observed in PHENIX (see below)
- To reduce the correlation one can fix a parameter
 - Fixing α , fitting R and λ (Constant to all m_T)
 - Fixing R, fitting α and λ (m_T dependent fit, based on hydro) $A/\sqrt{1+m_T/B}$

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Lévy Exponent α vs. m_T

- Stability exponent determines source shape
- Comparing free par. results with fixed parameter fits:
 - $\bullet\,$ Fitting with R fixed yields similar results, maybe smaller α

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Correlation Strength λ vs. m_T

- Correlation strength describes core/halo ratio
- \bullet Both R fixed and α fixed fitting show similar results
- Results are within free par. statistical uncertainty

< ∃ →

NA61/SHINE experiment and analysis setup Lévy HBT parameters Lévy HBT with fixed parameters

Lévy Scale R vs. m_T

- Levy HBT scale determines correlation length
- Parameter results similar
- $\bullet\,$ Trend a bit different for fixed α case

< ∃ >

Summary

- First NA61/SHINE Lévy HBT analysis
- Measured momentum correlations of identical pion pairs
- Fitted them with correlation functions from Lévy source
- Investigated parameter m_T dependencies for free par. fit
 - $R(m_T)$: Decreasing trend, hadron transverse flow?
 - $\lambda(m_T)$: Slight dependence with m_T , no "hole"
 - $\alpha(m_T)$: Not Gaussian, nearly Cauchy, around 1.0-1.5
- Investigated parameter m_T dependencies for fixed par. fit
 - Statistical uncertainties reduced

Thank you for your attention!

arXiv:1904.08169 [nucl-ex] arXiv:1906.06065 [nucl-ex]

・ロト ・同ト ・ヨト ・ヨト ・クタク

Bowler-Sinyukov Fit Formula Comparison

• Coul. corr. 1:
$$C(q) = (1 + \lambda e^{-|qR|^{\alpha}}) \cdot K(q)$$

• Coul. corr. 2: $C(q) = (1 - \lambda + (1 + e^{-|qR|^{\alpha}}) \cdot \lambda \cdot K(q))$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lévy Exponent \leftrightarrow Critical Exponent

- Power-law in spatial correlations: $\sim r^{-(1+\alpha)}$
- Spatial corr. at the crit. point: $\sim r^{-(d-2+\eta)}$

 $\alpha \equiv \eta$

Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042

- QCD universality class \leftrightarrow (random field) 3D Ising: Halasz et al., Phys.Rev.D58 (1998) 096007 Stephanov et al., Phys.Rev.Lett.81 (1998) 4816
 - 3D Ising: $\eta = 0.03631$

El-Showk et al., J.Stat.Phys.157 (4-5): 869

- Random field 3D Ising $\eta = 0.50 \pm 0.05$ Rieger, Phys.Rev.B52 (1995) 6659
- Lévy exponent α change near Critical End Point?

Core-Halo Model

- Hydrodinamically expanding core, emits pions at the freeze-out
- This results in a two component source: $S(x) = S_c(x) + S_h(x)$
- Core \cong 10 fm size, halo $(\omega, \eta ...) >$ 50 fm size
- Halo unresolvable experimentally
- True $q \rightarrow 0$, limit C(q = 0) = 2
- Results show $C(q \rightarrow 0) = 1 + \lambda$, where $\lambda = \left(\frac{N_{core}}{N_{balo} + N_{core}}\right)^2$

Bolz et al, Phys.Rev. D47 (1993) 3860-3870 Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

Systematic Uncertainties

Investigated sources of uncertainties

- Track settings
- Pair cuts
- Q bin width choice
- Fit range (Q_{min}, Q_{max}) choice (for each K_T)
- PID cuts

Typical effects and results:

- # of points for reconstruction in all TPC
 - Does not depend on m_T
 - For every param. always the largest syst. err.
- Fit limits are strongly dependent on K_T
- Ratio of clusters has low impact
- Q bin width has very low impact
- Track proximity to the main vertex
 - Has slight effect in $m_{T,2}, m_{T,3}$ for α and R
 - For λ , any visible effect is in $m_{T,0}$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●目目 やのの

Example Lévy HBT Fit

- Log-likelihood fit
- Assuming no corr. among q points
- Goodness-of-fit analyzed: conventional χ^2
 - Full range
 - Peak range
- Fit parameters:
 - λ Correlation strength related to core/halo ratio
 - R Lévy scale parameter similar to a HBT size
 - α Lévy index of stability possibly related to the CEP

・ロト ・同ト ・ヨト ・ヨト ・クタク

Projectile Spectator Detector

- Centrality measured using the Projectile Spectator Detector (PSD)
- Located on beam axis, measures forward energy E_F from spectators
- Intervals in E_F allows to select centrality classes
- 0-20% corresponds to $E_F < 730 GeV$

글 🖌 🖌 글 🕨

SD modules

2011 Be-run

Track and Pair Selection

• Track selection:

- Track quality and vertex cut applied
- Particle identification possible via dE/dx method
- Negative π pairs and positive π pairs
- Pair selection:
 - Check track pair transverse distance at several z values Drop one track randomly if their distance < 0.8 cm (pairs from actual and background events)
 - Ratio of number of recontructed to potential points > 0.5 Reduce track splitting (already small effect in Be+Be)

Particle Identification Method: dE/dx

- Particle identification from the energy loss in the TPC gas
- dE/dx PID works well in relativistic rise region
- PID resolution for dE/dx is 4%
- dE/dx versus log(p) measured, 80 slices fitted with Gaussians
- High π multiplicity; mean of Gaussians to describe pions

26 / 18

Negative Hadron Results with Trigger Bias

• Negative hadrons selected, these are mostly pions $(\pi/K < 2\% \text{ in EPJC77}(2017)10 671)$

(日) (周) (ヨ) (ヨ) (ヨ) (000